Measurement of the UHECR Energy Spectrum using the surface detector of the Pierre Auger Observatory

Gonzalo Rodriguez
University of Rome Tor Vergata and INFN
for the Pierre Auger Collaboration
Flux of Cosmic Rays

Fluxes of Cosmic Rays

(1 particle per m²-second)

Knee
(1 particle per m²-year)

Ankle
(1 particle per km²-year)
Flux of Cosmic Rays

(Particle flux: 1 particle per m²-second)

Knee
(1 particle per m²-year)

Ankle
(1 particle per km²-year)

Pierre Auger Observatory Energy > 10^{18} eV
Pierre Auger Observatory
research goals

Energy Spectrum of UHECR (E > 10^{18} eV)
→ Shape of the spectrum in the region of the GZK feature

Arrival Direction Distribution
→ Search for departure from isotropy - point sources

Mass Composition
→ Nuclei, photons, neutrinos, etc.
Pierre Auger Observatory
research goals

Energy Spectrum of UHECR (E > 10^{18} eV)
→ Shape of the spectrum in the region of the GZK feature

Arrival Direction Distribution
→ Search for departure from isotropy - point sources

Mass Composition
→ Nuclei, photons, neutrinos, etc.
Pierre Auger as a Hybrid detector
The Surface Detector Station

- Communications antenna
- GPS antenna
- Electronics enclosure
- Solar panels
- Battery box
- 3 – nine inch photomultiplier tubes
- Plastic tank with 12 tons of water
Inside Telescope Station

- 3.4 meter diameter segmented mirror
- 440 pixel camera
- Aperture stop and Optical filter
Surface Array (27 April 2009)

Surface Array
1600 detector stations
1.5 km spacing
3000 km²

Fluorescence Detectors
4 Telescope enclosures
6 Telescopes per enclosure
24 Telescopes total
Event reconstruction: $S(1000\text{m})$

Reconstruction procedure:

- χ^2-method to fit angles (θ, ϕ)
- Likelihood method to fit a NKG-type function

$$S(r) = S(1000\text{m}) \left(\frac{r}{1000\text{m}} \right)^\beta \left(\frac{r + r_s}{1000\text{m} + r_s} \right)^\beta$$

Fitting parameters
- core
- $S(1000\text{m})$
- Slope β fixed

$S(1000\text{m})$, signal at 1000m, is our Energy estimator
Fluorescence Reconstruction

- Fluorescence energy almost MC independent.

\[E_{FD} = f_{inv} \times E_{em} \]
Event selection and acceptance

- Physics trigger T4: 3ToT
- Quality trigger T5: Tank with maximum signal surrounded by 6 active stations
- Full efficiency: \(E \sim 3 \times 10^{18} \text{ eV} \)
- Zenith angle range: \([0, 60^\circ]\)
- Data period: Jan 1st, 2004 to Feb 28th, 2007
- Exposure: \(5100 \text{ km}^2 \text{ sr yr}\) uncertainty 3%
Energy Calibration
S(1000m) attenuation

- For the same energy S(1000m) decrease with the zenith angle.

- We extract the shape of the attenuation curve from data.

- We convert S(1000m) to S_{38}, which would be the signal if the shower arrive at 38°

\[x = \cos^2(\theta) - \cos^2(38°) \]
\[a = 0.94 \pm 0.06 \]
\[b = -1.21 \pm 0.27 \]
\[S_{38} = \frac{S(1000m)}{1 + ax + bx^2} \]
\[S_{38^\circ} \] and \(E_{FD} \) uncertainties

- **Uncertainties on \(E_{FD} \):**

\[
\sigma^2_{E_{FD}} = \sigma^2_{GH - Fit} + \sigma^2_{Geom.} + \sigma^2_{Inv. Energy} + \sigma^2_{VAOD}
\]

- **Uncertainties on \(S_{38^\circ} \):**

\[
\sigma^2_{S_{38^\circ}} = \sigma^2_{(CIC)} + \sigma^2_{(\cos \theta)} + \sigma^2_{(S(1000m))}
\]

\[
\sigma^2_{(S(1000m))} = \sigma^2_{Shower - Fluctuation} + \sigma^2_{(LDF - Fit)} + \sigma^2_{\beta_{sys}}
\]
Energy calibration fit

$E_{FD} = aS^b_{38^0}$

$a = 1.49 \pm 0.06\text{(stat)} \pm 0.12\text{(syst)} \times 10^{17} \text{ eV}$

$b = 1.08 \pm 0.01\text{(stat)} \pm 0.04\text{(syst)}$

$\chi^2/\text{n.d.f.} = 1.1$
Energy resolution

Mean 0.02 ± 0.01

RMS 0.19 ± 0.01

\[
\frac{\sigma}{E} = \frac{\sigma_{ESD}(\sigma S_{38^\circ})}{E_{SD}} \otimes \frac{\sigma_{EFD}}{E_{FD}} = 19\%
\]

Consistency between estimated SD and FD energy uncertainties and measurements.
Orthogonal pull distribution

\[
x = \log_{10} S_{38°} \\
y = \log_{10} E_{FD} \\
pull = \frac{y - (A + Bx)}{\sqrt{\sigma_y^2 + B^2 \sigma_x^2}}
\]

Mean 0.02 ± 0.01
RMS 1.01 ± 0.01
Systematic uncertainties in the FD energy measurement

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta E_{SD}/E_{SD}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Fluorescence Yield</td>
<td>14</td>
</tr>
<tr>
<td>Pressure dependence of Fluorescence Spectrum</td>
<td>1</td>
</tr>
<tr>
<td>Humidity dependence of Fluorescence Spectrum</td>
<td>5</td>
</tr>
<tr>
<td>Temperature dependence of Fluorescence Spectrum</td>
<td>5</td>
</tr>
<tr>
<td>FD absolute calibration</td>
<td>11</td>
</tr>
<tr>
<td>Time dependence of FD calibration</td>
<td>10</td>
</tr>
<tr>
<td>FD wavelength dependence response</td>
<td>3</td>
</tr>
<tr>
<td>Rayleigh atmosphere</td>
<td>1</td>
</tr>
<tr>
<td>Wavelength dependence of aerosol scattering</td>
<td>1</td>
</tr>
<tr>
<td>Aerosol phase function</td>
<td>1</td>
</tr>
<tr>
<td>FD reconstruction method</td>
<td>10</td>
</tr>
<tr>
<td>Invisible energy</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL SYST. 24%
Systematic uncertainties in the FD energy measurement

<table>
<thead>
<tr>
<th>Source</th>
<th>$\Delta E_{SD}/E_{SD}(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Fluorescence Yield</td>
<td>14</td>
</tr>
<tr>
<td>Pressure dependence of Fluorescence Spectrum</td>
<td>1</td>
</tr>
<tr>
<td>Humidity dependence of Fluorescence Spectrum</td>
<td>5</td>
</tr>
<tr>
<td>Temperature dependence of Fluorescence Spectrum</td>
<td>5</td>
</tr>
<tr>
<td>FD absolute calibration</td>
<td>11</td>
</tr>
<tr>
<td>Time dependence of FD calibration</td>
<td>10</td>
</tr>
<tr>
<td>FD wavelength dependence response</td>
<td>3</td>
</tr>
<tr>
<td>Rayleigh atmosphere</td>
<td>1</td>
</tr>
<tr>
<td>Wavelength dependence of aerosol scattering</td>
<td>1</td>
</tr>
<tr>
<td>Aerosol phase function</td>
<td>1</td>
</tr>
<tr>
<td>FD reconstruction method</td>
<td>10</td>
</tr>
<tr>
<td>Invisible energy</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL SYST. 24%
Energy Spectrum
Relative Flux

$\gamma = 2.69$
Combined Energy Spectrum: SD + Hybrid

\[J(E; E < E_{\text{ankle}}) \propto E^{-\gamma_1} \]

\[J(E; E < E_{\text{ankle}}) \propto E^{-\gamma_2} \frac{1}{1 + \exp\left(\frac{\log_{10} E - \log_{10} E_c}{W_c} \right)} \]

\[\gamma_1 = 3.30 \pm 0.06 \]

\[\gamma_2 = 2.56 \pm 0.06 \]

\[\log_{10} E_{\text{ankle}} = 18.65 \pm 0.04 \]

\[\log_{10} E_c = 19.74 \pm 0.06 \]

\[W_c = 0.16 \pm 0.04 \]
Summary and conclusions

- Energy calibration using high quality hybrid events.
- Exposure by a factor 2.5 larger than forerunner experiments.
- Systematics and uncertainties are under control. Will be reduced in future.
- Power law fit: \(J \propto E^{-\gamma} \):
 - For \(E \) [4x10^{18}, 4x10^{19}] \text{ eV} \), \(\gamma = 2.69 \pm 0.02 \text{(stat)} \pm 0.06 \text{(syst)} \)
 - For \(E \) above 4x10^{19} \text{ eV}, \(\gamma = 4.2 \pm 0.4 \text{(stat)} \pm 0.06 \text{(syst)}. \)
 - For \(E \) below 4x10^{18} \text{ eV}, spectral index change will be study with hybrid.
- We reject the hypothesis that the cosmic ray spectrum continues with a constant slope above 4x10^{19} \text{ eV}, with a significance of 6 standard deviations.