TeV Gamma Ray Observations with Milagro and HAWC

John Pretz – Los Alamos National Lab
RICAP 2009
Milagro Collaboration

Milagro Detector

- Central Water Pond (80x60 meter)
 - 450 PMTs under 1.5 m water
 - 273 PMTs under 6 m water
- Outriggers
 - 2.4 meter diameter
 - 1.4 meter tall
 - 175 PMTs in outrigger tanks
- Water Cherenkov Detector
- 2600 meters altitude
- 4000 m² pond / 40000 m² outrigger coverage
- 1700 Hz Trigger Rate
- 0.4° – 1.0° angular resolution
- Sensitivity 100 GeV – 100 TeV Median energy 10 – 40 TeV (depending on cuts, weights etc)
Gamma/Hadron Discrimination

- Penetrating component of Hadronic air showers illuminates the bottom layer.
Gamma/Hadron

- Penetrating component of Hadronic air showers illuminates the bottom layer.
The Cosmic Ray Picture

Astrophysical Source

‘Old’ CR Interacts.

‘Young’ CR Interacts.

Direct propagation
Open Questions

• What are sources of cosmic rays?
• How do the accelerators work?
• What is the source of the TeV Galactic diffuse emission?
• Is there a nearby source of cosmic rays?
Diffuse Gamma-ray Emission
TeV Diffuse Emission from the Galactic Plane with Milagro (Abdo et al. 2008)
Inner Galaxy and Cygnus Region Compared to Galprop

- 8 times the conventional flux
- 4.7 times the conventional flux

- **Total Galprop Prediction**
- **Pion Decay**
- **Electron Inverse Compton**

Petra Huentemeyer

• Unresolved Sources
 – Extrapolating HESS source population model can account for a substantial fraction of the excess (Casanova & Dingus. Astropart. Phys. 2008.)

• Unmodeled ‘young’ cosmic rays interacting near their sources
 – For instance, HESS observation of emission along the Galactic Center Ridge (Aharonian et al. Nature. 2006.)

• Dark Matter

• There is more to see.
Discrete Gamma-Ray Sources
Fermi-LAT Bright Source List

- Sensitivity from 100 MeV to hundreds of GeV
- 205 10σ sources in 3 months of data
- Blazars, pulsars identified by their variability.
- Several new pulsars (pulsations discovered in the GeV first)
- Deeper survey than entire EGRET dataset
- Angular resolution $< 0.1^\circ$ at the higher energies

Abdo et al. arXiv:0902.1340
Survey of the Galactic Plane

Boomerang PWN

MGRO J2019+37

MGRO J2032+41

MGRO J1908+06

Geminga

Crab
Milagro Search for TeV emission from Galactic sources

- 34 / 205 BSL sources are possibly Galactic and in Milagro’s field of view ($\delta > -5^\circ$)
 - 16 pulsars
 - 1 x-ray binary
 - 5 SNR
 - 12 unknown
- 14/34 are observed at 3\(\sigma\) or more in Milagro data
- Probability of a single 3\(\sigma\) detection in 34 trials is only 4%
- 6/14 have been reported by Milagro before
- 9/14 are pulsars (all 6 previous Milagro sources are now associated with pulsars)
- 3/14 are SNR
- ‘Most’ of the 3\(\sigma\) sources are true TeV detections, but cannot be claimed individually
- All of these will be observable with 3 months of HAWC data

arXiv:0904.1018
<table>
<thead>
<tr>
<th>Name (0FGL)</th>
<th>type</th>
<th>RA (deg)</th>
<th>DEC (deg)</th>
<th>l (deg)</th>
<th>b (deg)</th>
<th>Flux ($\times 10^{-17}$ TeV$^{-1}$ sec$^{-1}$ cm$^{-2}$)</th>
<th>Signif. (σ)</th>
<th>TeV assoc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>J007.4+7303</td>
<td>PSR</td>
<td>1.85</td>
<td>73.06</td>
<td>119.69</td>
<td>10.47</td>
<td>< 90.4</td>
<td>2.6</td>
<td>LSI +61 303</td>
</tr>
<tr>
<td>J0030.3+0450</td>
<td>PSR</td>
<td>7.60</td>
<td>4.85</td>
<td>113.11</td>
<td>-57.62</td>
<td>< 20.9</td>
<td>-1.7</td>
<td>Crab</td>
</tr>
<tr>
<td>J0240.3+6113</td>
<td>HXB</td>
<td>40.09</td>
<td>61.23</td>
<td>135.66</td>
<td>1.07</td>
<td>< 26.2</td>
<td>0.7</td>
<td>IC443</td>
</tr>
<tr>
<td>J0357.5+3205</td>
<td>PSR</td>
<td>59.39</td>
<td>32.08</td>
<td>162.71</td>
<td>-16.06</td>
<td>< 16.5</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>J0534.6+2201</td>
<td>PSR</td>
<td>83.65</td>
<td>22.02</td>
<td>184.56</td>
<td>-5.76</td>
<td>162.6 ± 9.4</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>J0613.9+0202</td>
<td>PSR</td>
<td>93.48</td>
<td>-2.05</td>
<td>210.47</td>
<td>-9.27</td>
<td>< 60.0</td>
<td>-0.0</td>
<td></td>
</tr>
<tr>
<td>J0617.4+2234</td>
<td>SNR*</td>
<td>94.36</td>
<td>22.57</td>
<td>189.08</td>
<td>3.07</td>
<td>28.8 ± 9.5</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>J0631.8+1034</td>
<td>PSR</td>
<td>97.95</td>
<td>10.57</td>
<td>201.30</td>
<td>0.51</td>
<td>47.2 ± 12.9</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>J0633.5+0634</td>
<td>PSR</td>
<td>98.39</td>
<td>6.58</td>
<td>205.04</td>
<td>-0.96</td>
<td>< 50.2</td>
<td>1.4</td>
<td>MGRO C3</td>
</tr>
<tr>
<td>J0634.0+1745</td>
<td>PSR</td>
<td>98.50</td>
<td>17.76</td>
<td>195.16</td>
<td>4.29</td>
<td>37.7 ± 10.7</td>
<td>3.5</td>
<td>Geminga</td>
</tr>
<tr>
<td>J0643.2+0858</td>
<td></td>
<td>100.82</td>
<td>8.98</td>
<td>204.01</td>
<td>2.29</td>
<td>< 30.5</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>J1653.4+0200</td>
<td></td>
<td>253.35</td>
<td>-2.01</td>
<td>16.55</td>
<td>24.96</td>
<td>< 51.0</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>J1830.3+0617</td>
<td></td>
<td>277.58</td>
<td>6.29</td>
<td>36.16</td>
<td>7.54</td>
<td>< 32.8</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>J1836.2+5924</td>
<td>PSR</td>
<td>279.06</td>
<td>59.41</td>
<td>88.86</td>
<td>25.00</td>
<td>< 14.6</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>J1844.1-0355</td>
<td></td>
<td>281.64</td>
<td>-3.59</td>
<td>26.91</td>
<td>-0.02</td>
<td>148.4 ± 34.2</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>J1848.6-0138</td>
<td></td>
<td>282.16</td>
<td>-1.64</td>
<td>31.15</td>
<td>-0.12</td>
<td>< 91.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>J1855.9+126</td>
<td>SNR*</td>
<td>253.59</td>
<td>1.44</td>
<td>34.72</td>
<td>-0.35</td>
<td>< 89.5</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>J1900.0+0356</td>
<td></td>
<td>285.01</td>
<td>3.95</td>
<td>37.42</td>
<td>-0.11</td>
<td>70.7 ± 19.5</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>J1907.5+0602</td>
<td></td>
<td>286.89</td>
<td>6.03</td>
<td>40.14</td>
<td>-0.82</td>
<td>116.7 ± 15.8</td>
<td>7.4</td>
<td>MGRO J1908+06</td>
</tr>
<tr>
<td>J1911.0+0905</td>
<td>SNR*</td>
<td>287.76</td>
<td>9.09</td>
<td>43.25</td>
<td>-0.18</td>
<td>< 41.7</td>
<td>1.5</td>
<td>HESS J1908+063</td>
</tr>
<tr>
<td>J1923.0+1411</td>
<td>SNR*</td>
<td>290.77</td>
<td>14.19</td>
<td>49.13</td>
<td>-0.40</td>
<td>39.4 ± 11.5</td>
<td>3.4</td>
<td>HESS J1923+141</td>
</tr>
<tr>
<td>J1935.2+3249</td>
<td></td>
<td>298.82</td>
<td>32.82</td>
<td>68.75</td>
<td>2.73</td>
<td>< 17.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>J1954.4+2838</td>
<td>SNR*</td>
<td>298.61</td>
<td>28.65</td>
<td>65.30</td>
<td>0.38</td>
<td>37.1 ± 8.6</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>J1958.1+2418</td>
<td></td>
<td>290.63</td>
<td>28.80</td>
<td>65.85</td>
<td>-0.23</td>
<td>34.7 ± 8.6</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>J2001.4+4352</td>
<td></td>
<td>300.27</td>
<td>43.87</td>
<td>79.06</td>
<td>7.12</td>
<td>< 12.1</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>J2020.8+3649</td>
<td>PSR</td>
<td>305.22</td>
<td>36.83</td>
<td>75.18</td>
<td>0.13</td>
<td>108.3 ± 8.7</td>
<td>12.4</td>
<td>MGRO J2019+37</td>
</tr>
<tr>
<td>J2021.5+4026</td>
<td></td>
<td>305.40</td>
<td>40.44</td>
<td>78.23</td>
<td>2.07</td>
<td>35.8 ± 8.5</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>J2027.5+3334</td>
<td></td>
<td>306.88</td>
<td>33.57</td>
<td>73.30</td>
<td>-2.85</td>
<td>< 16.0</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>J2032.2+4122</td>
<td></td>
<td>308.66</td>
<td>41.38</td>
<td>80.16</td>
<td>0.98</td>
<td>63.3 ± 8.3</td>
<td>7.6</td>
<td>TEV 2032+41</td>
</tr>
<tr>
<td>J2055.5+2640</td>
<td></td>
<td>313.89</td>
<td>25.67</td>
<td>70.66</td>
<td>-12.47</td>
<td>< 17.6</td>
<td>-0.0</td>
<td>MGRO J2031+41</td>
</tr>
<tr>
<td>J2110.8+4608</td>
<td></td>
<td>317.70</td>
<td>46.14</td>
<td>88.26</td>
<td>-1.35</td>
<td>< 24.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>J2214.8+5002</td>
<td></td>
<td>333.70</td>
<td>50.05</td>
<td>86.91</td>
<td>-21.66</td>
<td>< 20.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>J2229.0+6114</td>
<td>PSR</td>
<td>337.26</td>
<td>61.24</td>
<td>106.64</td>
<td>2.96</td>
<td>70.9 ± 10.8</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>J2302.9+4443</td>
<td></td>
<td>345.75</td>
<td>44.72</td>
<td>103.44</td>
<td>-14.00</td>
<td>< 13.2</td>
<td>-0.6</td>
<td>MGRO C4</td>
</tr>
</tbody>
</table>
The 3σ Locations

arXiv:0904.1018
The 3σ Locations

- Most Significant source in BSL
- Old (300 kyr) and nearby (169 pc)
- 3.5σ at the location of Geminga
- 6.3σ when assuming 1° extended source
- Fitted 2.2° extent, consistent with IACT observations of more distant PWN
The 3σ Locations

- Associated with LAT-identified pulsar
- Originally reported by Milagro as an 3° extended source.
- Source confusion with 0FGL J2021.5+4026?
The 3σ Locations

- Boomerang PWN
- 6.6σ at the pulsar location.
- Associated with known radio pulsar
- Extended source or additional source to the south.
Milagro Gamma-Ray Sources

- Milagro’s strongest sources are very likely TeV PWN. Typical TeV source is a PWN.
- TeV emission is quite commonly associated with MeV-GeV Pulsars.
- Spectrum to connect Milagro measurements to Fermi measurements are universally softer than 2.3.
- There is much more to see!
High Altitude Water Cherenkov detector (HAWC)

- Move Milagro PMTs to high-altitude site at Sierra Negra, Mexico
- One layer representing 10x the area of Milagro’s bottom layer
- Tanks can distinguish muons from EMS particles.
 - Better gamma/hadron separation.
- Overall 15x sensitivity improvement over Milagro.
- See sources 225x faster.
 - See 1 Crab every day.
High Altitude Water Cherenkov detector (HAWC)

- Move Milagro PMTs to high-altitude site at Sierra Negra, Mexico
- One layer representing 10x the area of Milagro’s bottom layer
- Tanks can distinguish muons from EMS particles.
 - Better gamma/hadron separation.
- Overall 15x sensitivity improvement over Milagro.
- See sources 225x faster.
 - See 1 Crab every day.
Gamma-Hadron Separation in HAWC
Status of HAWC

• ~1M USD from NSF, UMD, and Mexican funding institutions for construction of nano-HAWC.
 – Three small test tanks at the site.
• Tank selection in progress
• Permission to build a road to the site (yesterday)
• Data acquisition with 3-tank array has occurred.
Status of HAWC

• \sim1M USD from NSF, UMD, and Mexican funding institutions for construction of nano-HAWC.
 – Three small test tanks at the site
• Tank selection in progress
• Permission to build a road to the site (yesterday)
• Data acquisition with 3-tank array has occurred.
Status of HAWC

- ~1M USD from NSF, UMD, and Mexican funding institutions for construction of nano-HAWC.
- Three small test tanks at the site.
- Tank selection in progress.
- Permission to build a road to the site (yesterday).
- Data acquisition with 3-tank array has occurred.
Conclusions

• Milagro decommissioned in June 2008 and analysis of final dataset is underway. Exhibits the need for an all-sky survey instrument.
 • Gamma-rays:
 _List of sources and potential TeV emitters is growing. Appear to be mostly TeV PWN associated with MeV-GeV pulsars.
 _High-confidence TeV detection from Geminga and Boomerang PWN
 _How much Galactic Diffuse emission is explainable this way is an open question. Remaining Fermi data will help.
• HAWC
 _15x increase in Milagro sensitivity
 _Engineering progressing with 1M USD MRI
 _“Shovel Ready”